In [1]:
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import os
import sys
from six.moves import cPickle as pickle
%matplotlib inline
In [2]:
#pickle_file = 'train.pickle'
'''
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_X_1 = save['data']
train_outcome_1 = save['outcome']
del save # hint to help gc free up memory
'''
pickle_file = 'train2.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_X_0 = save['data']
train_outcome_0 = save['outcome']
del save # hint to help gc free up memory
'''
pickle_file = 'test.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
test_X_1 = save['data']
test_outcome_1 = save['outcome']
del save # hint to help gc free up memory
'''
pickle_file = 'test2.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
test_X_0 = save['data']
test_outcome_0 = save['outcome']
del save # hint to help gc free up memory
In [3]:
#reformat the label
#for each digit, add a 'end_digit' as '10'
#for each label, add a digit size
#each of them is a one-hot coding
def label_reformat(label, max_size = 5):
digit_size = np.asarray([len(x) for x in label])
digit_size[digit_size > max_size]= max_size
digit_size = ((np.arange(max_size)+1) == digit_size[:,None]).astype(np.float32)
digits = {}
end_digit = 10.0
for i in range(max_size):
digit_coding = np.asarray( [x[i] if len(x)>i else end_digit for x in label])
digit_coding = (np.arange(end_digit+1) == digit_coding[:,None]).astype(np.float32)
digits['digit_'+ str(i)] = digit_coding
return digit_size, digits
In [4]:
#train_X_0 = np.vstack((train_X_1 ,train_X_2 ))
In [5]:
train_X_0.shape
Out[5]:
In [6]:
#train_X_0 = np.vstack((train_X_1 ,train_X_2 ))
image_size = train_X_0.shape[1]
num_channels = train_X_0.shape[3]
batch_size = 200
val_size = 50
test_size = 50
#train_label = train_outcome_1['label'] + train_outcome_2['label']
train_label = train_outcome_0['label'][:5000]
train_digit_size, train_digits = label_reformat(train_label)
train_X = train_X_0[:5000]
val_label = test_outcome_0['label'][:5000]
val_digit_size, val_digits = label_reformat(val_label)
val_X = test_X_0[:5000]
val_size = val_X.shape[0]
In [7]:
print train_digit_size.shape
print train_digits['digit_0'].shape
print train_X.shape
In [8]:
plt.imshow(train_X[0,:,:,:])
plt.show()
print train_digits['digit_0'][0]
print train_digits['digit_1'][0]
In [9]:
plt.imshow(val_X[1,:,:,:])
plt.show()
print val_digits['digit_0'][1]
print val_digits['digit_1'][1]
In [10]:
def next_batch(X, y_dsize, y_ds, batch_size=50, replace = True):
idx = np.random.choice(X.shape[0],batch_size, replace = replace)
batch_x = X[idx,:,:,:]
batch_y_dsize = y_dsize[idx,:]
batch_y_d1 = y_ds['digit_0'][idx,:]
batch_y_d2 = y_ds['digit_1'][idx,:]
batch_y_d3 = y_ds['digit_2'][idx,:]
batch_y_d4 = y_ds['digit_3'][idx,:]
batch_y_d5 = y_ds['digit_4'][idx,:]
return batch_x, batch_y_dsize, batch_y_d1, batch_y_d2, batch_y_d3, batch_y_d4, batch_y_d5
In [11]:
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
In [12]:
# shape = [None, ...], the None element of the shape corresponds to a variable-sized dimension.
x_image = tf.placeholder(tf.float32, shape=[None, image_size, image_size, num_channels])
y_d1 = tf.placeholder(tf.float32, shape=[None, 11])
y_d2 = tf.placeholder(tf.float32, shape=[None, 11])
y_d3 = tf.placeholder(tf.float32, shape=[None, 11])
y_d4 = tf.placeholder(tf.float32, shape=[None, 11])
y_d5 = tf.placeholder(tf.float32, shape=[None, 11])
y_dsize = tf.placeholder(tf.float32, shape=[None, 5])
# Small epsilon value for the BN transform
epsilon_BN = 1e-3
In [13]:
W_conv1_BN = weight_variable([5, 5, num_channels, 32])
b_conv1_BN = bias_variable([32])
z_conv1_BN = conv2d(x_image, W_conv1_BN) + b_conv1_BN
#calculate mean and variance
batch_mean1, batch_var1 = tf.nn.moments(z_conv1_BN,[0,1,2])
# Apply the initial batch normalizing transform
z_conv1_hat = (z_conv1_BN - batch_mean1)/tf.sqrt(batch_var1 + epsilon_BN)
# Create two new parameters, scale and beta (shift)
# use .getshape() to set the shape of parameters
scale1 = tf.Variable(tf.ones(z_conv1_hat.get_shape()[-1]))
beta1 = tf.Variable(tf.zeros(z_conv1_hat.get_shape()[-1]))
# Scale and shift to obtain the final output of the batch normalization
# this value is fed into the activation function
h_conv1 = tf.nn.relu(scale1 * z_conv1_hat + beta1)
#max pool
h_pool1 = max_pool_2x2(h_conv1)
Note that tensorflow provides a tf.nn.batch_normalization. This code does the same thing as the code for layer 1 above.
In [14]:
W_conv2_BN = weight_variable([5, 5, 32, 64])
b_conv2_BN = bias_variable([64])
z_conv2_BN = conv2d(h_pool1, W_conv2_BN) + b_conv2_BN
#calculate mean and variance
#note here, use global normalization, axes = [0,1,2]
batch_mean2, batch_var2 = tf.nn.moments(z_conv2_BN,[0,1,2])
# Create two new parameters, scale and beta (shift)
# use .getshape() to set the shape of parameters. Here, get the last dimension
scale2 = tf.Variable(tf.ones(z_conv2_BN.get_shape()[-1]))
beta2 = tf.Variable(tf.zeros(z_conv2_BN.get_shape()[-1]))
# Scale and shift to obtain the final output of the batch normalization
# this value is fed into the activation function
z_conv2 = tf.nn.batch_normalization(z_conv2_BN, batch_mean2, batch_var2, beta2, scale2, epsilon_BN )
h_conv2 = tf.nn.relu( z_conv2 )
#max pool
h_pool2 = max_pool_2x2(h_conv2)
In [15]:
W_fc1 = weight_variable([16 * 16 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 16*16*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#first digit
W_fc2_d1 = weight_variable([1024, 11])
b_fc2_d1 = bias_variable([11])
y_conv_d1 = tf.matmul(h_fc1_drop, W_fc2_d1) + b_fc2_d1
#second digit
W_fc2_d2 = weight_variable([1024, 11])
b_fc2_d2 = bias_variable([11])
y_conv_d2 = tf.matmul(h_fc1_drop, W_fc2_d2) + b_fc2_d2
#third digit
W_fc2_d3 = weight_variable([1024, 11])
b_fc2_d3 = bias_variable([11])
y_conv_d3 = tf.matmul(h_fc1_drop, W_fc2_d3) + b_fc2_d3
#fourth digit
W_fc2_d4 = weight_variable([1024, 11])
b_fc2_d4 = bias_variable([11])
y_conv_d4 = tf.matmul(h_fc1_drop, W_fc2_d4) + b_fc2_d4
#fifth digit
W_fc2_d5 = weight_variable([1024, 11])
b_fc2_d5 = bias_variable([11])
y_conv_d5 = tf.matmul(h_fc1_drop, W_fc2_d5) + b_fc2_d5
#digit size
W_fc2_dsize = weight_variable([1024, 5])
b_fc2_dsize = bias_variable([5])
y_conv_dsize = tf.matmul(h_fc1_drop, W_fc2_dsize) + b_fc2_dsize
cross_entropy = ( tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv_d1, y_d1))
+ tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv_d2, y_d2))
+ tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv_d3, y_d3))
+ tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv_d4, y_d4))
+ tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv_d5, y_d5))
+ tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv_dsize, y_dsize))
)
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#let's just check the first digit
correct_prediction = tf.equal(tf.argmax(y_conv_d1,1), tf.argmax(y_d1,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
In [21]:
num_steps = 4000
summary_frequency = 20
BNs_train, BNs_test, acc_train, acc_test = [], [], [], []
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(num_steps):
(batch_x, batch_y_dsize,
batch_y_d1, batch_y_d2,
batch_y_d3, batch_y_d4, batch_y_d5) = next_batch(train_X,
train_digit_size,train_digits, batch_size)
feed_dict={x_image: batch_x, y_dsize: batch_y_dsize,
y_d1: batch_y_d1, y_d2: batch_y_d2, y_d3: batch_y_d3,
y_d4: batch_y_d4, y_d5: batch_y_d5, keep_prob: 0.5}
train_step.run(feed_dict=feed_dict)
if i%summary_frequency == 0:
#train_accuracy = accuracy.eval(feed_dict=feed_dict)
res_train = sess.run([accuracy,z_conv2],feed_dict=feed_dict)
print("step %d, training accuracy %g"%(i, res_train[0]))
acc_train.append(res_train[0])
BNs_train.append(np.mean(res_train[1],axis=0).flatten()[:10])
(batch_x, batch_y_dsize, batch_y_d1,
batch_y_d2, batch_y_d3, batch_y_d4, batch_y_d5) = next_batch(val_X,
val_digit_size,
val_digits,
batch_size, replace = False)
feed_dict={x_image: batch_x,
y_dsize: batch_y_dsize,y_d1: batch_y_d1,
y_d2: batch_y_d2, y_d3: batch_y_d3,y_d4: batch_y_d4,
y_d5: batch_y_d5, keep_prob: 1}
res = sess.run([accuracy,z_conv2],feed_dict=feed_dict)
acc_test.append(res[0])
# record the first 10 mean value of BN2 over the entire test set
BNs_test.append(np.mean(res[1],axis=0).flatten()[:10])
BNs_train, BNs_test, acc_train, acc_test = ( np.array(BNs_train),
np.array(BNs_test),
np.array(acc_train),
np.array(acc_test) )
In [24]:
fig, ax = plt.subplots()
ax.plot(range(0,len(acc_train)*summary_frequency,summary_frequency),acc_train, label='Training')
ax.plot(range(0,len(acc_test)*summary_frequency,summary_frequency),acc_test, label='Validation')
ax.set_xlabel('Training steps')
ax.set_ylabel('Accuracy')
ax.set_ylim([0,1])
ax.set_title('Batch Normalization Accuracy')
ax.legend(loc=4)
plt.show()
In [25]:
fig, axes = plt.subplots(5, 2, figsize=(6,12))
fig.tight_layout()
for i, ax in enumerate(axes):
ax[0].set_title("training BN")
ax[1].set_title("validation BN")
ax[0].plot(BNs_train[:,i])
ax[1].plot(BNs_test[:,i])
prediction with BN is not right. Need addtional coding
In [28]:
predictions = []
correct = 0
for i in range(1000):
(batch_x, batch_y_dsize, batch_y_d1,
batch_y_d2, batch_y_d3, batch_y_d4, batch_y_d5) = next_batch(val_X, val_digit_size, val_digits,
1, replace = False)
feed_dict={x_image: batch_x,
y_dsize: batch_y_dsize,y_d1: batch_y_d1,
y_d2: batch_y_d2, y_d3: batch_y_d3,y_d4: batch_y_d4,
y_d5: batch_y_d5, keep_prob: 1}
corr = sess.run(accuracy,
feed_dict=feed_dict)
correct += corr
#predictions.append(pred[0])
#print("PREDICTIONS:", predictions)
print("ACCURACY:", correct/1000)
In [73]:
# this is a simpler version of Tensorflow's 'official' version. See:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/layers.py#L102
# http://r2rt.com/implementing-batch-normalization-in-tensorflow.html
def batch_norm_wrapper(inputs, is_training, decay = 0.999, epsilon = 1e-3):
scale = tf.Variable( tf.ones(inputs.get_shape()[-1]) )
beta = tf.Variable(tf.zeros(inputs.get_shape()[-1]))
pop_mean = tf.Variable(tf.zeros(inputs.get_shape()[-1]), trainable=False)
pop_var = tf.Variable(tf.ones(inputs.get_shape()[-1]), trainable=False)
if is_training:
#for conv layer, use global normalization
batch_mean, batch_var = tf.nn.moments(inputs,[0,1,2])
#print pop_mean.get_shape()
train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay))
train_var = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay))
with tf.control_dependencies([train_mean, train_var]):
return tf.nn.batch_normalization(inputs, batch_mean, batch_var, beta, scale, epsilon)
else:
return tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, scale, epsilon)
In [74]:
def build_graph(is_training):
# shape = [None, ...], the None element of the shape corresponds to a variable-sized dimension.
x_image = tf.placeholder(tf.float32, shape=[None, image_size, image_size, num_channels])
y_d1 = tf.placeholder(tf.float32, shape=[None, 11])
y_d2 = tf.placeholder(tf.float32, shape=[None, 11])
y_d3 = tf.placeholder(tf.float32, shape=[None, 11])
y_d4 = tf.placeholder(tf.float32, shape=[None, 11])
y_d5 = tf.placeholder(tf.float32, shape=[None, 11])
y_dsize = tf.placeholder(tf.float32, shape=[None, 5])
#first layer
W_conv1_BN = weight_variable([5, 5, num_channels, 32])
b_conv1_BN = bias_variable([32])
z_conv1_BN = conv2d(x_image, W_conv1_BN) + b_conv1_BN
#print z_conv1_BN.get_shape()
# Scale and shift to obtain the final output of the batch normalization
# this value is fed into the activation function
z_conv1 = batch_norm_wrapper(z_conv1_BN, is_training)
h_conv1 = tf.nn.relu(z_conv1)
#max pool
h_pool1 = max_pool_2x2(h_conv1)
#second layer
W_conv2_BN = weight_variable([5, 5, 32, 64])
b_conv2_BN = bias_variable([64])
z_conv2_BN = conv2d(h_pool1, W_conv2_BN) + b_conv2_BN
# Scale and shift to obtain the final output of the batch normalization
# this value is fed into the activation function
z_conv2 = batch_norm_wrapper(z_conv2_BN, is_training)
h_conv2 = tf.nn.relu( z_conv2 )
#max pool
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([16 * 16 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 16*16*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#first digit
W_fc2_d1 = weight_variable([1024, 11])
b_fc2_d1 = bias_variable([11])
y_conv_d1 = tf.matmul(h_fc1_drop, W_fc2_d1) + b_fc2_d1
#second digit
W_fc2_d2 = weight_variable([1024, 11])
b_fc2_d2 = bias_variable([11])
y_conv_d2 = tf.matmul(h_fc1_drop, W_fc2_d2) + b_fc2_d2
#third digit
W_fc2_d3 = weight_variable([1024, 11])
b_fc2_d3 = bias_variable([11])
y_conv_d3 = tf.matmul(h_fc1_drop, W_fc2_d3) + b_fc2_d3
#fourth digit
W_fc2_d4 = weight_variable([1024, 11])
b_fc2_d4 = bias_variable([11])
y_conv_d4 = tf.matmul(h_fc1_drop, W_fc2_d4) + b_fc2_d4
#fifth digit
W_fc2_d5 = weight_variable([1024, 11])
b_fc2_d5 = bias_variable([11])
y_conv_d5 = tf.matmul(h_fc1_drop, W_fc2_d5) + b_fc2_d5
#digit size
W_fc2_dsize = weight_variable([1024, 5])
b_fc2_dsize = bias_variable([5])
y_conv_dsize = tf.matmul(h_fc1_drop, W_fc2_dsize) + b_fc2_dsize
cross_entropy = ( tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv_d1, y_d1))
+ tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv_d2, y_d2))
+ tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv_d3, y_d3))
+ tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv_d4, y_d4))
+ tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv_d5, y_d5))
+ tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv_dsize, y_dsize))
)
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#let's just check the first digit
correct_prediction = tf.equal(tf.argmax(y_conv_d1,1), tf.argmax(y_d1,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
return ( (x_image, y_dsize, y_d1, y_d2, y_d3, y_d4, y_d5, keep_prob) , train_step, accuracy, z_conv2, tf.train.Saver())
In [75]:
#Build training graph, train and save the trained model
sess.close()
tf.reset_default_graph()
( (x_image, y_dsize, y_d1, y_d2, y_d3, y_d4, y_d5, keep_prob), train_step, accuracy, z_conv2, saver) = build_graph(is_training=True)
num_steps = 4000
summary_frequency = 20
BNs_train, BNs_test, acc_train, acc_test = [], [], [], []
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for i in range(num_steps):
(batch_x, batch_y_dsize,
batch_y_d1, batch_y_d2,
batch_y_d3, batch_y_d4, batch_y_d5) = next_batch(train_X,
train_digit_size,train_digits, batch_size)
feed_dict={x_image: batch_x, y_dsize: batch_y_dsize,
y_d1: batch_y_d1, y_d2: batch_y_d2, y_d3: batch_y_d3,
y_d4: batch_y_d4, y_d5: batch_y_d5, keep_prob: 0.5}
train_step.run(feed_dict=feed_dict)
if i%summary_frequency == 0:
#train_accuracy = accuracy.eval(feed_dict=feed_dict)
res_train = sess.run([accuracy,z_conv2],feed_dict=feed_dict)
print("step %d, training accuracy %g"%(i, res_train[0]))
acc_train.append(res_train[0])
BNs_train.append(np.mean(res_train[1],axis=0).flatten()[:10])
(batch_x, batch_y_dsize, batch_y_d1,
batch_y_d2, batch_y_d3, batch_y_d4, batch_y_d5) = next_batch(val_X,
val_digit_size,
val_digits,
batch_size, replace = False)
feed_dict={x_image: batch_x,
y_dsize: batch_y_dsize,y_d1: batch_y_d1,
y_d2: batch_y_d2, y_d3: batch_y_d3,y_d4: batch_y_d4,
y_d5: batch_y_d5, keep_prob: 1}
res = sess.run([accuracy,z_conv2],feed_dict=feed_dict)
acc_test.append(res[0])
# record the first 10 mean value of BN2 over the entire test set
BNs_test.append(np.mean(res[1],axis=0).flatten()[:10])
saved_model = saver.save(sess, 'temp-bn-save')
BNs_train, BNs_test, acc_train, acc_test = ( np.array(BNs_train),
np.array(BNs_test),
np.array(acc_train),
np.array(acc_test) )
In [76]:
fig, ax = plt.subplots()
ax.plot(range(0,len(acc_train)*summary_frequency,summary_frequency),acc_train, label='Training')
ax.plot(range(0,len(acc_test)*summary_frequency,summary_frequency),acc_test, label='Validation')
ax.set_xlabel('Training steps')
ax.set_ylabel('Accuracy')
ax.set_ylim([0,1])
ax.set_title('Batch Normalization Accuracy')
ax.legend(loc=4)
plt.show()
In [78]:
sess.close()
tf.reset_default_graph()
( (x_image, y_dsize, y_d1, y_d2, y_d3, y_d4, y_d5, keep_prob),
train_step, accuracy, z_conv2, saver) = build_graph(is_training=False)
predictions = []
correct = 0
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
saver.restore(sess, saved_model)
for i in range(1000):
(batch_x, batch_y_dsize, batch_y_d1,
batch_y_d2, batch_y_d3, batch_y_d4, batch_y_d5) = next_batch(val_X, val_digit_size, val_digits,
1, replace = False)
feed_dict={x_image: batch_x,
y_dsize: batch_y_dsize,y_d1: batch_y_d1,
y_d2: batch_y_d2, y_d3: batch_y_d3,y_d4: batch_y_d4,
y_d5: batch_y_d5, keep_prob: 1}
corr = sess.run(accuracy,
feed_dict=feed_dict)
correct += corr
#predictions.append(pred[0])
#print("PREDICTIONS:", predictions)
print("ACCURACY:", correct/1000)
In [61]:
a = [1,2,3,4]
a[-1]
Out[61]:
In [63]:
a[1:]
Out[63]:
In [72]:
[1]
Out[72]:
In [ ]: